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Abstract Motivated by recurrent neural networks, this paper proposes a recurrent
support vector regression (SVR) procedure to forecast nonlinear ARMAmodel based
simulated data and real data of financial returns. The forecasting ability of the recurrent
SVR based ARMA model is compared with five competing models (random walk,
thresholdARMAmodel,MLEbasedARMAmodel, recurrent artificial neural network
based ARMA model and feed-forward SVR based ARMA model) by using two fore-
casting accuracy evaluation metrics (NSME and sign) and robust Diebold–Mariano
test. The results reveal that for one-step-ahead forecasting, the recurrent SVR model
is consistently better than the benchmark models in forecasting both the magnitude
and turning points, and statistically improves the forecasting performance as opposed
to the usual feed-forward SVR.
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1 Introduction

This paper considers financial returns forecasting in the framework of a univariate
autoregressive moving average (ARMA) model by using the proposed recurrent ε-
SVR approach. For more than two decades, the linear ARMA model estimated by
maximum likelihood estimation (MLE) has been a popular approach for forecasting
non-stationary time series, as opposed to simple moving average methods and the ran-
dom walk. This implies that the analysed variables should satisfy the normal assump-
tion and have a large sample. However, it has been widely accepted that the returns
of a variety of financial variables are not linearly predictable in general and the phe-
nomenon of volatility clustering in it leads to the violation of the normal assumption,
as a result of which, the linear ARMA model by MLE usually tends to provide poor
forecasting performance (Priestley 1988; Box et al. 1994; Niemira and Klein 1994;
Hamilton 1997). Thus, some non-linear alternative ARMA models are proposed and
adopted to estimate the time series, including both parametric specifications such as
regime-switching or threshold ARMA models and non-parametric ARMA models.
The prevailing method to estimate non-parametric time series models is the artifi-
cial neural network (ANN). Plenty of studies on the ANN method denote that the
ANN approach outperforms traditional MLE in forecasting financial time series and
particularly, the recurrent ANN with richer dynamic structure could capture more
characteristics of data in the generalisation period than the feed-forward one (Kuan
and Liu 1995; Wu 1995; Tian et al. 1997; Lisi and Schiavo 1999; Ashok and Mitra
2002; Gaudart et al. 2004; Kamruzzaman and Sarker 2004), but some indicate mixed
or opposite results (Adya and Collopy 1998; Kanas 2003). While the ANN is theoret-
ically better at estimating non-linear finite samples without invoking a probabilistic
distribution, it has however been criticized as being vulnerable to the over-fitting prob-
lem which usually leads to a local optimum and to empirical risk minimization, the
same as the MLE,1 the latter of which results in good fit and poor out-of-sample fore-
cast. To avoid the theoretical pitfalls of the MLE and ANN in the forecasting area,
fortunately, Vapnik (1995, 1997) has successfully developed a novel non-parametric
function approximator, the Support Vector Machine (SVM), which is computation-
ally powerful in the sense that it allows for (1) a finite and infinite sample; (2) no
prior distribution assumption; and (3) minimising of the structural risk as opposed to
empirical risk employed by MLE and ANN, which endows SVM with an excellent
generalisation (or forecasting) ability out-of-sample and is the biggest advantage of
SVM among all alternatives (We refer to Sect. 2 for a detailed explanation).

SVMwas originally developed for classification problems (SVC) and then extended
to regression problems (SVR). SVMhas recently been successfully applied to financial
variable classification and financial time series forecasting, for example, see Trafalis
and Ince (2000), Cao and Tay (2001), Gestel et al. (Jul. 2001), Yang et al. (2002),

1 For MLE, maximizing the joint probability density function amounts to minimizing the sum of residual
squares, i.e., minimizing the empirical risk, which is equivalent to the OLS approach.
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Härdle et al. (2005, 2006), Espinoza et al. (2006) and Lee et al. (2006), to name a
few. As Haykin (1999) argued earlier, the present studies on SVMmostly focus on the
feed-forward direction and the previous application literatures of the SVR based time
series forecasting only consider the dynamic systems of non-linear Autoregressive
(AR) model. In a context of networks, these systems do not have feedback loops from
the output or hidden layer to the input layers. It is well known that recurrent ANN,
networks with feedbacks, can characterize the behaviour of time series variables with
richer dynamic structures and have more potential to significantly reduce the memory
requirement than the feed-forward one (Kuan et al. 1994; Kuan 1995; Kuan and Liu
1995). Suykens and Vandewalle (Jul. 2000) and Suykens et al. (2002) extend the
recurrent networks to support vector machine and proposed a new recurrent least
squares SVM (LS-SVM) procedure. Hong (2011) also introduces a feedback Jordan
network into the SVRprocedurewhen forecastingmonthly electric loads. Their studies
reveal that the recurrent SVR procedure can forecast time series very well.

Also motivated by the recurrent ANN, in this paper, we propose a new ε-insensitive
loss based support vector regression (SVR) procedure with the addition of a global
feedback connection from the output layer to the input space. In terms of the termi-
nology of the recurrent LS-SVM, we refer to the proposed procedure as a recurrent
ε-SVR and to the standard SVR as a feed-forward SVR. To examine the sensitivity
of the recurrent ε-SVR with respect to free parameters, we experiment with three free
parameters, ε, C and σ 2 by using a cross validation method. The difference between
the recurrent LS-SVM and our recurrent ε-SVR is that the different empirical loss
functions are used; the former adopts the mean square error (MSE), the latter uses
the ε-insensitive error which can lead to sparseness solutions (see Sect. 2 for details).
Different from our recurrent design which includes a feedback loop from the output
layer directly to input layer, Hong (2011) recurrent SVR applies a Jordan network
proposed by Jordan (1987) as a recurrent learning mechanism framework in which a
feedback loop is introduced from the output layer to an additional context layer, and
then the output values from the context layer are fed back into the hidden layer. Also,
different from the cross-validation approach used in this study, Hong (2011) com-
bines the seasonal recurrent SVR with chaotic artificial bee colony algorithm (namely
SRSVRCABC) to determine suitable values of the parameters of SVR.

In this paper, the proposed recurrent ε-SVR procedure will be applied to forecast-
ing the ARMA model for the simulated data (linear ARMA series and non-linear
Lorenz series) and the real data of financial returns [Canadian Dollar against the U.S.
dollar (CAD) exchange rates and New York Stock ExchangeTM (NYSE) composite
stock index]. The iterative epochs of the recurrent ε-SVR procedure are described in
Sect. 2 and illustrated by the simulation data. The forecasting performance among
the recurrent and feed-forward SVR ARMA models, recurrent ANN ARMA, MLE
ARMA, threshold ARMA and randomwalkmodel is compared by using two forecast-
ing evaluation metrics (NMSE and sign) in a one-step-ahead forecasting horizon, and
the statistical hypothesis of equal forecasting accuracy between pairwise models is
also investigated by using the Diebold and Mariano (1995) test, calculated according
to Newey–West Procedure (Newey and West 1987). The Diebold and Mariano (DM)
test is one of the most important contributions to the study of out-of-sample forecast-
ing accuracy evaluation over past two decades. This paper is organized as follows.
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Section 2 introduces the theory of standard SVR and proposes the recurrent ε-SVR
procedure. Section 3 specifies the empirical modelling and forecasting scheme. Sec-
tion 4 compares the forecasting performance of all candidates by using the simulated
and real data, in which the parameters selection and iterative process are illustrated in
detail. The conclusion is presented in Sect. 5.

2 Support vector regression (SVR)

2.1 Principle of standard ε-SVR

The support vector machines for regression (SVR) originates from Vapnik’s statistical
learning theory (Vapnik 1995, 1997), which has the design of a feed-forward network
with an input layer, a single hidden layer of non-linear units and an output layer
and formulates the regression problem as a quadratic programming (QP) problem
(Haykin 1999). SVR estimates a function by non-linearly mapping the input space
into a high dimensional hidden space and then running the linear regression in the
output space (see Fig. 1). Thus, the linear regression in the output space corresponds
to a non-linear regression in the low dimensional input space. And the theory denotes
that if the dimensions of feature space (or hidden space) are high enough, SVR may
approximate any non-linear mapping relations. As the name implies, the design of the
SVR hinges upon the extraction of a subset of the training data that serves as support
vectors which represent a stable characteristic of the data.

Fig. 1 Architecture of support vector machines
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Given a training data set {(xt , yt )}Tt=1, where inputs vector xt ∈ Rp and output
scalar yt ∈ R1. In classification problem, the variable y only takes two values, −1
and 1; while in regression y can take any real values. Indeed, the desired response
y, known as a ‘teacher’, represents the optimum action to be performed by the SVR.
We aim at finding a sample regression function f (x) (or denoted by ŷ) as below to
approximate the latent, unknown decision function g (x).

f (x) = wTφ (x) + b (1)

where φ (x) = [φ1 (x) , . . . , φl (x)]T , w = [w1, . . . , wl ]T . The φ (x) is known as
the non-linear transfer function which represents the features of the input space and
projects the inputs into the feature space. The dimension of the feature space is l
which is directly related to the capacity of the SVR to approximate a smooth input–
output mapping; the higher the dimension of the feature space, the more accurate the
approximation will be. Parameter w denotes a set of linear weights connecting the
feature space to the output space, and b is the threshold.

To get the function f (x), the optimal w∗ and b∗ have to be estimated from the
data. Firstly, we define a linear ε-insensitive loss function, Lε, originally proposed by
Vapnik (1995).

Lε (x, y, f (x)) =
{ |y − f (x)| − ε f or |y − f (x)| ≥ ε

0 otherwise
(2)

This function indicates the fact that it does not penalize errors below ε. The training
points within the ε-tube have no loss and do not provide any information for decision.
Therefore, these points do not appear in the decision function f (x). Only those data
points located on or outside the ε-tube will serve as the support vectors to be finally
used to construct the f (x). The sparseness property of the algorithm results only from
the ε-insensitive loss function and greatly simplifies the computation of the SVR.
Thus, the SVR based on it is also called ε-SVR, which is different from the other loss
functions such as (mean) squared errors (MSE). The non-negative slack variables, ξ
and ξ ′ (below or above the ε-tube, or denoted together by ξ (′); see Fig. 2) are employed
to describe this kind of ε-insensitive loss, that is, the loss of error on training points
out of the ε-tube.

The derivation of SVR follows the principle of structural risk minimization that is
rooted in VC dimension theory. Structural risk is the upper boundary of empirical loss,
denoted by ε-insensitive loss function, plus the confidence interval (or called margin),
which is constructed inEq. (3). The primal constrained optimization problemof ε-SVR
is obtained below:

min
w∈Rl ,ξ (′)∈R2T ,b∈R

C
(

w, b, ξt , ξ
′
t

) = 1

2
‖w‖2 + C

T
∑

t=1

(

ξt + ξ ′
t

)

(3)

s.t. wTφ (xt ) + b − yt ≤ ε + ξt t = 1, 2, . . . , T (4)

yt − wTφ (xt ) − b ≤ ε + ξ ′
t t = 1, 2, . . . , T (5)

ξt ≥ 0, ξ ′
t ≥ 0 t = 1, 2, . . . , T (6)
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The formulation of the cost function C
(

w, b, ξt , ξ ′
t

)

in Eq. (3) is in perfect accord
with the principle of structural risk minimisation, which is illustrated in Fig. 2 (in
which the dark circles are data points extracted as support vectors). In Eq. (3), the
first term indicates the Euclidean norm of the weight vector w(‖w‖2 = wT w) and
measures the function flatness; the minimization of it is related to the maximization
of the margin of separation (2/‖w‖), i.e., maximizing the generalisation ability. The
second term represents the empirical risk loss determined by the ε-insensitive loss
function and is similar to the sum of residual squares in the objective function of
MLE and ANN. Finally, SVR obtains the trade-off between the two terms; as a result,
it not only well fits the historical data but excellently forecasts the future data. As
shown in Fig. 2, both regression lines 1 and 2 can classify the data points correctly
and then minimize the empirical loss; however, the margins of generalisation of the
two lines are different in which the regression line 1 has the largest margin. It is the
special design of minimizing the structural risk that endows SVR with the excellent
forecasting ability among all candidates. Evgeniou et al. (2002) also denoted that
minimization of an empirical error only is both ill-posed and does not necessarily lead
to models with good predictive capabilities, thus, one needs to minimize a structural
risk. In addition, the convex quadratic programming and linear restrictions in the above
primal problem ensure that SVR can always obtain the global unique optimal solution,
which is different from the usual networks that easily get trapped in local minima. The
penalty parameter C > 0 controls the penalizing extent on the sample which lie out
of the ε-tube. Both ε and C must be selected by the user.

The corresponding dual problem of the ε-SVR can be derived from the primal
problem by using the Karush–Kuhn–Tucker conditions as follows.

Fig. 2 Principle of structural risk minimization of ε-SVR
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min
α

(′)
t ∈R2T

1

2

T
∑

s=1

T
∑

t=1

(

α′
s − αs

) (

α′
t − αt

)

K (xs · xt )

+ε

T
∑

t=1

(

α′
t + αt

) −
T

∑

t=1

yt
(

α′
t − αt

)

(7)

s.t.
T

∑

t=1

(

αt − α′
t

) = 0 (8)

0 ≤ αt , α
′
t ≤ C s, t = 1, 2, . . . , T (9)

where, αt and α′
t (or α

(′)
t ) are the Lagrange multipliers. The dual problem can be

solved more easily than the primal problem (Scholkopf and Smola 2001; Deng and
Tian 2004). Making use of any solution, αt and α′

t , the optimal solutions of primal
problem can be calculated, in which, w∗ is unique and expressed as follows:

w∗ =
T

∑

t=1

(

α′
t − αt

)

φ (xt ) (10)

However, b∗ is not unique and formulated in terms of different cases. If i ∈
{t |αt ∈ (0,C)},

b∗ = yi −
T

∑

t=1

(

α′
t − αt

)

K (xt · xi ) + ε (11)

If j ∈ {

t |α′
t ∈ (0,C)

}

,

b∗ = y j −
T

∑

t=1

(

α′
t − αt

)

K
(

xt · x j
) − ε (12)

The cases of both i, j ∈
{

t |α(′)
t = 0

}

and i, j ∈
{

t |α(′)
t = C

}

rarely occur in reality.

Thus, the regression decision function f (x)will be computed by the use of w∗ and
b∗ in the following forms:

f (x) = w∗Tφ (x) + b∗

=
T

∑

t=1

(

α′
t − αt

)

φT (xt ) φ (x) + b∗

=
T

∑

t=1

(

α′
t − αt

)

K (xt , x) + b∗ (13)

where K (xt , x) = φT (xt ) φ (x) is the inner-product kernel function. In fact, the SVR
theory considers only the form of K (xt , x) in the feature space without specifying
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φ (x) explicitly and without computing all corresponding inner products. Therefore,
the kernel function greatly reduces the computational complexity of high dimensional
hidden space and becomes the crucial part of SVR. The function which satisfies Mer-
cer’s theorem can be chosen as the SVR kernel. In this paper the chosen kernel is the
widely-used Gaussian kernel, or called the radial based function (RBF) kernel which
offers a way to measure proximity between two data points and is expressed as below.

K (xt , x) = exp

(

−‖x − xt‖
2σ 2

2
)

(14)

where σ 2 is the kernel width which implicitly controls the complexity of the feature
space and the solution (the higher the σ 2 is, the lower the complexity is). For the
Gaussian kernel, the explicit expression of non-linear transformation function φ (x) is
unknown, and the corresponding feature dimension l is infinite.

2.2 Algorithm of recurrent ε-SVR

As Haykin (1999) said, the SVR described in Sect. 2.1 usually appears in the design of
a simple feed-forward network in which an input layer of source nodes projects onto
an output layer of computation node, but not vice versa, see Fig. 3a. This process is
known as feed-forward SVR. If the in-sample fitting errors are white noise, or do not
display auto-correlation, the feed-forward SVR is efficient in the sense that they can
be utilized to estimate AR(p) model directly. LetOt andHt represent the single-output
and l hidden unit activations. Symbolically, we have

Ot = ψ
(

wT Ht + b
)

; Ht = φ (xt ) (15)

where xt = {

xt,i
}p
i=1 = {yt−i }pi=1. Note that ψ and φ are vector-valued functions and

represent the identity function and the transfer function to produce Gaussian kernel,
respectively.

Fig. 3 Signal-flow graphs of
feed-forward and recurrent SVR
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If it is not the case, the information reflected behind the errors should be utilized to
improve the estimating power of the model, thus, the ARMA model, i.e., introducing
the error terms (MA part) into the AR model, becomes reasonable. To estimate the
ARMA model, a feedback process of ε-SVR with an unobservable MA part as an
input has to be described—which distinguishes itself from a feed-forward SVR in that
it has at least one feedback loop (see Fig. 3b). In this paper, we abuse the terminology
and refer to this process as “recurrent ε-SVR”. The feedback loops involve the use of
particular branches composed of one-delay operator, z−1, which result in non-linear
dynamical behaviour and have a profound impact on the learning capability of SVR.
Thus, the recurrent ε-SVR will capture more dynamic characteristics of yt than a
feed-forward SVR does.

Let Rt denote one-delayed internal feedbacks. Then, the recurrent ε-SVR can be
represented in the following generic form

Ot = ψ
(

wT Ht + b
)

; Ht = φ (xt , Rt ) (16)

where,xt = {yt−i }pi=1 . Rt is chosen tobeOt−1; that is, the recurrent process has output
feedbacks rather than hidden unit activations feedbacks. Thus, Rt can be expressed as

Rt = τ (xt−1, Rt−1; w, b) (17)

with τ also a vector-valued function.
If Rt = 0, the process simply reduces to a feed-forward SVR, in which the finite

lagged responses are used as inputs to capture dynamics. This approach manifests
the drawback that the correct lag length needed is typically unknown and somewhat
difficult to determine. On the one hand, the finite lagged dependent variables may
not be enough to capture certain temporal structures, especially those dependent on a
long history of targets. On the other hand, storing all the past information in memory
is practically implausible. The case is similar to building a linear AR model with
finite p lags. This deficiency could be circumvented by our device of recurrent SVR.
The feedback variable Rt will serve as a memory device to store past information
compactly. That is,

Rt = τ (xt−1, τ (xt−2, Rt−2; w, b) ; w, b) = · · · = υ (xt−1, xt−2, . . . , x1; w, b)
(18)

Thus, the output of recurrent SVR can be written in the following feed-forward
form

Ot = ψ
(

wTφ (xt , Rt ) + b
)

= κ (xt , Rt (w, b) ; w, b)

= f (xt , xt−1, xt−2, . . . , x1; w, b) (19)

As Rt depends on the entire history of inputs, introducing recurrent variable Rt

with the contraction mapping requirement of τ to a feed-forward SVR is similar to
adding invertible moving average term to an AR model. Therefore, a recurrent SVR
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may be interpreted as a parsimonious model which incorporates all the past inputs
without storing all of them in memory. That is, in our device, Rt can be set to just
one-delayed error term ut−1, ut−1 = z−1 [yt − Ot ], so as to avoid the difficulty in
determining the lag length of recurrent input. Very small number of lag p in xt is also
appropriate for this recurrent SVR, for instance, p = 2 in our application. Thus, the
specification of recurrent SVR based non-linear ARMA model used in this study is
just simply ARMA (2, 1) model. It is the richer dynamic structure and specification
convenience that make the recurrent SVR attractive in dynamic applications.

Now, according to Eqs. (3)–(6), we can rewrite the primal problem of recurrent
ε-SVR for non-linear ARMA (2,1) model as follows:

min
w,b,ξ (′)

C
(

w, b, ξ (′)
t

)

= 1

2
‖w‖2 + C

T
∑

t=1

(

ξt + ξ ′
t

)

(20)

s.t. wTφ (yt−1, yt−2, ut−1) + b − yt ≤ ε + ξt (21)

yt − wTφ (yt−1, yt−2, ut−1) − b ≤ ε + ξ ′
t (22)

ξt ≥ 0, ξ ′
t ≥ 0 t = 1, 2, . . . , T (23)

Also, the convex quadratic programming and linear restrictions ensure that the
recurrent ε-SVR can always obtain the global unique optimal solution w∗. By using
the Karush–Kuhn–Tucker conditions, we can construct its dual problem, obtain the
corresponding solution, αt and α′

t , and compute w∗ and b∗. Because the inner-product
kernel is a Gaussian kernel, the regression decision function f (x) of recurrent ε-SVR
is formulated as

f (x) = f (ys−1, ys−2, us−1) = w∗Tφ (ys−1, ys−2, us−1) + b∗

=
T

∑

t=1

(

α′
t − αt

)

exp

(

− 1

2σ 2 || (ys−1, ys−2, us−1) − (yt−1, yt−2, ut−1) ||2
)

+ b∗

(24)

where s is any time point within or outside of the training period. And the MA part,
us−1, can be skipped over and only the AR part is used for forecasting during the
test period. The real constant coefficient σ 2 is also chosen by the users. Using the
estimated decision function (24), we can achieve the best generalisation capability in
forecasting y on new inputs.

The difficulty of estimating the recurrent ε-SVR lies in the fact that the error term is
unobservable. To overcome such difficulty,we employ themodel residuals as estimates
of the errors in an iterative way, which is similar to the way that the linear ARMA
model is iteratively estimated by MLE (Box et al. 1994; Hamilton 1997). Likewise,
we initially set the error term to be its expectation, 0. In the following, the empirical
procedure of the recurrent ε-SVR executed during the training phase is described. As
denoted above, the empirical procedure is illustrated for the case of the non-linear
stochastic ARMA (2, 1) model, yt = g(yt−1, yt−2, et−1) + et . The letter i indicates
the iterative epoch and t denotes the period.
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Step 1: Set i = 1 and start with all residuals at zero: e(1)
t = 0.

Step 2: Run a SVR procedure to get the decision function f (i) to the points {xt , yt }
with all inputs xt =

{

yt−1, yt−2, e
(i)
t−1

}

.

Step 3: Compute the new residuals e(i+1)
t = yt − f (i).

Step 4: Terminate the computational process when the stopping criterion is satisfied;
otherwise, set i = i + 1 and go back to Step 2.

Note that the first iterative epoch is in fact a feed-forward SVR process and results
in a AR (2) model and that the following epochs provide results of the ARMA (2,1)
model, being estimated by the recurrent ε-SVR.

In general, the procedure cannot be shown to converge, and there are no well-
defined criteria for stopping its operation. Rather, some reasonable criteria can be
found, although with its own practical drawback, which may be used to terminate the
computational process. To formulate such a criterion, it is logical to think in terms
of the properties of the estimated residual series. After enough long iterative steps,
the auto-correlation displayed behind the residuals during the first AR epoch should
disappear, and the information in the residual behavior has been used out and the
final residual series should be white noise. Accordingly, we may suggest a sensible
convergence criterion for the recurrent ε-SVR procedure as follows:

The recurrent ε-SVR procedure is considered to have converged when the
corresponding residuals become white noise, or have no auto-correlation.

To quantify the measurement of white noise, we use the formal hypothesis test,
Ljung–Box–Pierce Q-test to investigate a departure from randomness based on the
ACF of the residuals. Under the null hypothesis of no auto-correlation in residuals,
the Q-test statistic is asymptotically Chi square distributed. Concretely, we just need
to check the actual p values of Q-test of lag 1. It’s reasonable to think there is no higher
order auto-correlation if no one-order auto-correlation is in the residuals. Only if the
p values of Q-test are simultaneously higher than 0.1 for consecutive five epochs,
should the iterative computational process be stopped. To overcome the drawback
of this convergence criterion, we use cross validation to avoid the possibility of an
over-fitting problem; see Sect. 4.1 for detailed information.

3 Empirical modelling and forecasting scheme

3.1 Empirical models and their specification

As denoted in Sect. 2.2, very few lag numbers of non-linear ARMAmodel are enough
for recurrent ε-SVR and ANN approaches to capture the dynamic characteristics of
data sets. Therefore, the basic forecasting framework in this study is the ARMA (2,
1) model. For the convenience of comparison, we make use of the ARMAmodel with
the same lag orders for its linear form. The linear ARMA (2, 1) model estimated by
MLE is described below:

yt = μ + φ1yt−1 + φ2yt−2 + et + θ1et−1 (25)
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The empirical models for the recurrent ε-SVR and the recurrent ANN are specified
as the non-linear ARMA (2, 1) process, expressed below:

yt = g(yt−1, yt−2, et−1) + et . (26)

Then, the feed-forward ε-SVR corresponds to the nonlinear AR (2) model,

yt = g (yt−1, yt−2) + et (27)

In this paper, the non-linear function g (·) specified for recurrent ε-SVR is a radial
basis function because only the Gaussian kernel is chosen for the SVR in this study.
Of course, other functions such as polynomial, spline, hyperbolic tangent kernel also
satisfy Mercer’s conditions and can be adopted as the non-linear function of SVR.
Before the implementation of the recurrent ε-SVR, their free parameters, ε (or denoted
epsilon), C and Gaussian kernel width σ 2 (or sigma2) must be determined in advance
through cross validation. The process of sensitivity analysis will be illustrated by using
simulation in Sect. 4.1.

The benchmark recurrent ANN used in this study is the feedback multilayer per-
ceptrons (MLP) network, denoted recurrent MLP. We specify this kind of recurrent
back-propagation networkwith the following architecture: one non-linear hidden layer
with four neurons, each using a tan-sigmoid differentiable transfer function to generate
the output, and one linear output layer with one neuron. Thus, the non-linear function
g (·) specified for recurrent MLP is a tan-sigmoid function. As a training algorithm,
the fast training Levenberg–Marquardt algorithm is chosen. The value of the learning
rate parameter used in the training process is set to be 0.05. These specifications and
choices are standard in neural network literature.

In addition to the ARMA (2, 1) framework specified above, this paper will also
compare the forecasting of recurrent SVR approach with another two benchmark
models: one is the random walk model, the simplest time series model; another is a
non-linear two-regime threshold ARMA model, TARMA(2; 2, 2; 0, 1), specified as
below:

yt =
{

μ(1) + φ
(1)
1 yt−1 + φ2

(1)yt−2 + et i f yt−2 ≥ 0
μ(2) + φ

(2)
1 yt−1 + φ

(2)
2 yt−2 + et + θ1et−1 i f yt−2 < 0

(28)

in which if the market return is non-negative the model is specified as AR (2) frame-
work; if the return is negative the model is specified as an ARMA (2, 1) model, the
introduced moving average term also serving as a memory device because the finan-
cial market is normally asymmetric in which the bad news often has a more long-term
influence on the financial return and its volatility.

3.2 Forecasting scheme

In this paper, a recursive forecasting scheme is employed with an updating sample
window; the estimating and forecasting process is carried out recursively by updating
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the sample with one observation each time, re-running the recurrent ε-SVR procedure
and recalculating the model parameters and corresponding forecasts. The notations
used in this study are as follows; The total number of series yt is denoted as T and the
number of observations used for the first in-sample estimation is T1 (or called training
sample). Then, T − T1 observations are retained as a forecasting or test sample. Let
the actual series at period t + j and the j-step-ahead forecast of the series made at
period t be written as yt+ j and ŷt+ j , respectively. Then, we can write

ŷt+ j |t = ̂E
(

yt+ j |yt , yt−1, . . . , y1
)

(29)

so that the j-step-ahead forecast of the series made at time t is the expected value of
the series j periods in the future, given all information available at time t . In Eq. (29),
t = T1, . . . , T − j . Thus, the forecast horizon is fixed at j steps ahead, and the starting
point t is varied. Therefore, we can estimate and forecast the recurrent ε-SVR based
ARMA (2, 1) model for n = T − j − T1 + 1 times.

In this paper, only one-step-ahead forecasts are used for out-of-sample forecasting
evaluation which indicates j = 1. We set n = 100 for linear ARMA simulation and
n = 400 for non-linear Lorenz simulated series. The forecasting sample for the real
data of CAD andNYSE returns is from 2 January 2014 to 30May 2014. Thus, n = 104
is for CAD and n = 103 for NYSE returns.

3.3 Evaluation metrics and pairwise comparison of competing models

Two evaluation metrics are employed to compare the forecasting performance among
the recurrent ε-SVR and the competing methods: normalized mean square error
(NMSE) and correct sign predictions (sign) (Pesaran and Timmerman 1990; Moosa
2000). The NMSE measures the magnitude of the forecasting error and the sign mea-
sures correctness in predicted directions, i.e., the turning point correctness. Their
formulas are

NMSE (%) = 100 × MSE

Var (y)
= 100 ×

∑n
i=1 (yi − ŷi )2/n

∑n
i=1

(

yi − yi
)2

/ (n − 1)
(30)

sign (%) = 100

n

n
∑

i=1

ai , where ai =
{

1 (yi+1 − yi ) (ŷi+1 − ŷi ) > 0
0 otherwise

(31)

To test for equal forecasting accuracy of two competing models, we use the two-
sided DM test statistic proposed by Diebold and Mariano (1995) for the difference of
NMSE metric. The null hypothesis is H0: NMSE1–NMSE0 = 0, where the subscript
0 denotes the benchmark model and 1 the target model. The DM tests in this study are
investigated in a robust form, by simply scaling the numerator by a heteroscedastic-
ity and autocorrelation consistent (HAC) (co)variance matrix calculated according to
Newey–West procedures (Newey and West 1987). We use Andrews (1991) approxi-
mation rule to automatically select the number of lags for HAC matrix. In the case of
a large sample, the DM statistic converges in distribution to a standard normal.
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4 Forecasting application with simulated and real data

4.1 Simulations

4.1.1 Data generating process

To evaluate the forecasting performance of recurrent ε-SVR approach, we first conduct
the following simulation. The target variable yt , t = 1, . . . , T is randomly generated
from two models: (1) a linear ARMA (2, 1) model:

yt − 0.9yt−1 + 0.3yt−2 = et − 0.7et−1 (32)

where the noise inputs, et , are generated from the standard normal distribution and
the simulated yt are discrete; (2) a non-linear Lorenz feedback system:

dy/dt = 16 (x − y)

dx/dt = −yz + 45.92y − x

dz/dt = yx − 4z (33)

where the step size is 0.01. TheStudent’s t noise is included in the simulated continuous
yt series (see Lorenz 1963 formore).We include both linear and non-linear simulations
to see how the recurrent ε-SVR procedure performs when a linear series is not really
applicable. In the simulations, the sample size T is 1,000, and the number of replica-
tions is 200. The reported results are the mean values of 200 independent replications.

4.1.2 Parameters selection and iterative epochs of recurrent SVR

The use of cross-validation is appealing particularly when we have to design a some-
what complex approach with a good generalisation as the goal. For example, here, we
may use cross-validation to determine the values of free parameters with the best per-
formance, and when it is best to stop training, as described in the following. The first
training data, that is, the former 900 observations for the linear ARMA series (briefly
denoted LARMA) and 600 for non-linear Lorenz series, are exemplified. The training
data are further randomly partitioned into two disjoint subsets: estimating sample and
validating sample (700 and 200 observations for LARMA; 500 and 100 for Lorenz).

As shown in Sect. 2, two free parameters (ε and C) and kernel width σ 2 have to
be determined by us before running the recurrent ε-SVR procedure. The motivation
of using cross validation here is to validate the model on a data set different from the
one used for parameter estimation. In this way we may use the training set to assess
the performance of various values of parameters, and thereby choose the best one.
The sensitivity analysis of recurrent ε-SVR (represented by the generalisation error
NMSE) with respect to three parameters are illustrated in Fig. 4.

Figure 4a–c describes the sensitivity analysis for one of 200 simulated linearARMA
series. Parameter ε varies between the range [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05,
0.1, 0.3, 0.5, 0.7, 0.9, 1.0]withCbeingfixed at 0.1 andσ 2 at 1.Thevalues of ε before the
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Fig. 4 Sensitivity analysis of the recurrent ε-SVR for simulation data

point of ε at 0.01 have no influence on the performance of our recurrent SVR, which
is considerably stable. Parameter C varies from very small value 0.0001 to infinity
with ε being fixed at 0.01 and σ 2 at 1. Clearly, when C = 0.1, NMSE of validation
sample obtains the lowest value, 99%; after that, over-fitting the training set occurs.
Coefficient σ 2 varies between values of 0.01 and 0.1 with C being fixed at 0.1 and ε at
0.01. Both values of NMSE attain the minima when σ 2 = 1.0. Thus, the appropriate
parameters of recurrent SVR for linear ARMA series are: ε = 0.01,C = 0.1 and
σ 2 = 1.0. Figure 4d–f describes the parameter selection process for the non-linear
Lorenz series. Similar to LARMA, the performance of recurrent SVR is very stable
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Fig. 5 Iterative epochs of recurrent ε-SVR for simulation data

and not influenced by any value of ε before the point ε = 0.3. And when C = 50 and
σ 2 = 10, the values of NMSE for validation subsets all reach to their minima, 0.046%.
Therefore, the correct parameters chosen for Lorenz series are ε = 0.1,C = 50 and
σ 2 = 10, respectively.

With good forecasting performance as the goal, it is very difficult to figure out
when it is best to stop training only in terms of fitting performance. It is possible
for the procedure to end up over-fitting the training data if the training session is not
stopped at the right point. We can identify the onset of over-fitting and the stopping
point through the use of cross-validation. Figure 5a, b describes the iterative epochs
for one of 200 linear ARMA and non-linear Lorenz series, respectively. For the former
series, the iterative process of recurrent ε-SVR is stopped at the 82th epoch; while, for
the latter series, the iterative process is longer and stopped after 220 iterative steps,
maybe due to the non-linearity and noise of the series. Now, we can say, at about
the 10 percent significance level, the final residuals obtained from the recurrent SVR
procedure have no autocorrelation. In addition, the p value curves of both estimating
and validating samples exhibit a similar pattern (increase for an increasing number
of epochs) and point to the almost same stopping point. That is to say, there is no
over-fitting phenomenon for the examples illustrated here, the recurrent ε-SVRmodel
does as well on the validating subset as it does on the estimating subset, on which its
design is based.

4.1.3 Comparing forecasting performance

There is still the possibility of over-fitting after training. Therefore, the generalisation
performance of the competed models is further measured and evaluated on the test set,
which is different from the validation subset. For the simulated data, the forecasting
sample is the latter 100 observations for the LARMA series and latter 400 for Lorenz
series. Thus, the recurrent ε-SVR and the benchmark models should be recursively
trained and forecast 100 and 400 times for respective series to obtain the corresponding
one-step-ahead forecasts for evaluation.

The average NMSE and the proportion of correct sign predictions of 200 replicable
simulations for each method are reported in Table 1, in which, a smaller NMSE and
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Table 1 Measures of forecasting performance for simulation data

Series Metrics Random
walk

Threshold
ARMA

MLEARMA Recurrent
ANN ARMA

Feedforward
SVR ARMA

Recurrent
SVR ARMA

LARMA NMSE 101.88 102.42 101.23 101.05 100.97 100.96

sign 34.34 40.40 42.31 40.37 40.16 41.76

Lorenz NMSE 0.00853 0.00265 0.00624 0.00082 0.00092 0.00074

sign 96.24 98.25 98.77 96.41 98.99 99.48

Table 2 Diebold–Mariano test for the NMSE difference on simulation data

Models LARMA Lorenz

DM1 DM2 DM3 DM4 DM5 DM6 DM1 DM2 DM3 DM4 DM5 DM6

Random walk 0.428 0.661 0.524 0.991 0.958 0.894 0.604 1.000 1.000 1.000

Threshold ARMA 0.572 0.816 0.902 0.993 0.984 0.106 0.206 0.998 0.997 0.999

MLE ARMA 0.339 0.184 0.753 0.953 0.928 0.396 0.794 1.000 1.000 1.000

Recurrent ANN ARMA 0.476 0.098 0.247 0.873 0.846 0.000 0.002 0.000 0.359 0.904

Feedforward SVR ARMA 0.009 0.007 0.047 0.127 0.584 0.000 0.003 0.000 0.641 0.916

Recurrent SVR ARMA 0.042 0.016 0.072 0.154 0.416 0.000 0.001 0.000 0.096 0.084

DM1–DM6 are the robust Diebold and Mariano (1995) test by using Newey–West procedures (Newey and
West 1987) when the benchark models are the random walk, threshold ARMA, MLE ARMA, recurrent
ANN ARMA, feedforward SVR ARMA and recurrent SVR ARMAmodels, respectively. For each test we
consider the NMSE metrics

a higher sign value indicate the better forecasting performance. As shown in Table 1,
the recurrent SVR ARMA model almost outperforms the benchmarks in one-step-
ahead forecasting, except for the sign metric of MLE model. The overall superiority
of the recurrent SVR over the feed-forward one reveals that the proposed recurrent
ε-SVR in this study really improves the forecasting performance of the standard SVR
because the recurrent networks have a higher ability to capture the dynamic feature
of series than does the feed-forward one. The fact that the recurrent SVR behaves
better than the recurrent ANN confirms that the structural risk minimizing principle
endows SVR with stronger forecasting ability as opposed to ANN model. The sign
value of MLE model for LARMA series is 42.91%, higher than those of recurrent
ANN, feed-forward and recurrent SVR (40.37, 40.16 and 41.76%), indicating that
the non-linear ARMA model is not suitable to the data with linearity with respect to
non-linear Lorenz series. The evidence that the values of NMSE for Lorenz series are
far lower than those for LARMA may have resulted from the continuous nature for
the former and discrete the latter.

Table 2 presents the p values of Diebold–Mariano (DM) test for the NMSE differ-
ence, which are defined as the significance levels at which the null hypothesis under
investigation can be rejected.We report the results of the DM test, say DM1, in the sec-
ond and eighth column for two simulated series, respectively, under the null hypothesis
that the NMSE metric produced by the random walk model equals to those obtained
by the use of the other models. Concretely, a p value no greater than 0.05 indicates that
the random walk model yields a higher forecasting error (in terms of NMSE) relative
to the competing model at a 5% significance level, a p value no smaller than 0.95
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means that random walk produces a lower forecasting error at 5% level, while a p
value between 0.05 and 0.95 implies that the benchmark and competing models have
the equivalent forecasting accuracy from the viewpoint of statistics. DM2–DM6 are
organized in the same manner and illustrative of the test results when the benchmark
models are respectively, the threshold ARMA, MLE based ARMA, recurrent ANN
ARMA, feed-forward and recurrent SVR models. The same interpretation applies to
the p values reported for DM2–DM6.

For LARMA series, DM1 tests reveal that both feed-forward and recurrent SVR
ARMA models have a statistically stronger forecasting power than random walk at
least at 5% significance level, while the forecasting ability between random walk
and threshold ARMA, MLE based ARMA and recurrent ANN ARMA models is
similar. According to DM2 statistic, the non-linear threshold ARMAmodel and linear
MLE based ARMA model have a similar forecasting ability, while the forecasting
power of threshold ARMA model is statistically lower than the non-linear ARMA
model estimated by recurrent ANN, feed-forward and recurrent SVR at least at 10%
significance level. DM3 statistic tells us that the linear MLE based ARMA model is
statistically inferior to both feed-forward and recurrent SVR models but equivalent
to the recurrent ANN model in forecasting the LARMA series. The only exception
is suggested by the statistic of DM4 and DM5; that is, the recurrent ANN model is
not inferior to feed-forward and recurrent SVR model and the recurrent SVR model
is also not better than feed-forward SVR model. For Lorenz series, the DM tests
only reveal three cases of similar forecasting performance, random walk and MLE-
based ARMA model, threshold ARMA and MLE ARMA model, recurrent ANN
and feed-forward SVR ARMA model. Other cases all show the statistical forecasting
difference between the benchmark and target models. Especially, the recurrent SVR
ARMA model consistently and statistically outperforms all other benchmark models
at least at a 10% significance level. Obviously, the forecasting performance measured
by NMSE metrics in Table 1 is mostly supported by the DM tests reported in Table 2.

4.2 Real data analysis

In this sub-section, we investigate the forecasting performance of all candidates by
using real data for two kinds of financial variables: CAD/USD exchange rates and
NYSE average index.

4.2.1 Data description

The first data set consists of the daily nominal bilateral exchange rates of the Canadian
Dollar (CAD) against the US dollar for the period between 2 January 2004 and 30
May 2014. The data are obtained from a database of Policy Analysis Computing and
Information Facility in Commerce (PACIFIC) at the University of British Columbia.
The second data set consists of daily closing price of New York Stock ExchangeTM

(NYSE) composite stock index for the period of 2 January 2004 to 30 May 2014. The
data are downloaded directly from the Market Information section of the NYSETM

web page.
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Fig. 6 Log levels and returns of CAD exchange rates and NYSE stock index

It has been widely accepted that a variety of financial variables including foreign
exchange rates and stock prices are integrated at an order of one. To avoid the issue
of possible non-stationarity, this paper considers the financial returns, yt , which are
converted from corresponding levels (price or index), It , by using continuous com-
pounding transforms as

yt = 100 × (log It+1 − log It ) (34)

Both data are transformed into daily returns via Eq. (33), providing a return series
of 2,611 observations for CAD and 2,619 observations for NYSE. For CAD returns,
the recursive training is used with updating window data starting from the former
2,507 observations through the former 2,610 observations; the 104 one-day-ahead
forecasts of returns will be obtained. For the NYSE, the recursive training is from the
former 2,516 observations through the former 2,618 observations; the 103 one-day-
ahead forecasts of returns are achieved. Both the forecasting returns correspond to the
period of 2 January 2014 to 30 May 2014. The daily series for the log-levels of price
and the returns of the CAD and NYSE are depicted in Fig. 6. The figure shows that the
price indices are obviously non-stationary, and the return series are mean-stationary,
and exhibit the typical volatility clustering phenomenon with periods of unusually
large volatility followed by periods of relative tranquility.
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Table 3 Measures of forecasting performance for real data

Models Metrics Random
walk

Threshold
ARMA

MLE
ARMA

Recurrent
ANN ARMA

Feedforward
SVR ARMA

Recurrent
SYR ARMA

CAD NMSE 99.34 99.47 99.42 101.11 96.89 90.75

sign 46.15 50.00 52.88 54.81 53.85 55.77

NYSE NMSE 99.68 99.46 99.20 98.40 98.62 91.68

sign 52.43 56.31 55.34 54.37 57.28 60.19

Table 4 Diebold–Mariano test for the NMSE difference on real data

Models CAD NYSE

DM1 DM2 DM3 DM4 DM5 DM6 DM1 DM2 DM3 DM4 DM5 DM6

Random walk 0.481 0.337 0.094 0.973 1.000 0.576 0.591 0.913 0.904 0.998

Threshold ARMA 0.519 0.594 0.459 0.987 1.000 0.424 0.563 0.938 0.909 0.984

MLE ARMA 0.663 0.406 0.076 0.999 1.000 0.409 0.437 0.531 0.525 0.999

Recurrent ANN ARMA 0.906 0.541 0.924 1.000 1.000 0.087 0.062 0.469 0.484 0.978

Feedforward SVR ARMA 0.027 0.013 0.001 0.000 0.997 0.096 0.091 0.475 0.516 1.000

Recurrent SVR ARMA 0.000 0.000 0.000 0.000 0.003 0.002 0.016 0.001 0.022 0.000

DM1–DM6 are the robust Diebold and Mariano (1995) test by using Newey–West procedures (Newey and
West 1987) when the benchark models are the random walk, threshold ARMA, MLE ARMA, recurrent
ANN ARMA, feedforward SVR ARMA and recurrent SVR ARMAmodels, respectively. For each test we
consider the NMSE metrics

4.2.2 Comparing forecasting performance

The implementation of parameter selection and iterative process of recurrent ε-SVR for
real data are the same as the simulations and are skipped over here to save space. Based
on such kind of sensitivity analysis, the appropriate parameters are ε = 0.005,C =
0.001 and σ 2 = 1 for CAD returns and ε = 0.3,C = 0.01 and σ 2 = 0.2 for NYSE
returns.

The results of out-of-sample return forecasting accuracy based on two quantitative
metrics (NMSE and sign) are presented in Table 3. Table 4 reports the p values of
Diebold–Mariano (DM) test for the difference of NMSE metric in a robust HAC form
from Newey–West procedures. The NMSE metrics reveal that the recurrent SVR
ARMA model has the strongest forecasting ability as opposed to other five bench-
mark models for both CAD and NYSE returns (with least NMSE value of 90.75 and
91.68), which is statistically confirmed by DM tests reported in Table 4 at least at
5% significance level. Except for recurrent SVR model, the feed-forward SVR sta-
tistically outperforms all other models in forecasting one-day-ahead financial returns
of CAD and the NYSE, with two exceptions that it has similar forecasting perfor-
mance to MLE and recurrent ANN ARMA model when forecasting NYSE returns.
All other DM statistics show that four models of random walk, threshold ARMA,
MLE ARMA and recurrent ANN model have similar forecasting performance based
on NMSE metric when compared with each other, except for the random walk and
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Fig. 7 Actual and forecasted financial returns

recurrent ANN, threshold and recurrent ANN model in forecasting NYSE returns.
The sign metrics reported in Table 3 show that recurrent SVR ARMA model also
behaves best in forecasting turning points of both CAD and NYSE returns, 55.77 and
60.19%, respectively. The empirical evidence of real data also confirms the conclusion
obtained in the Monte Carlo Simulation and does favour the theoretical the advantage
of recurrent SVR model.

We plot the actual and one-day-ahead forecasting returns by the recurrent ε-SVR
in Fig. 7. The 104 one-day-ahead forecasting returns correspond to the out-of-sample
period between 2 January 2014 and 30 May 2014 for the CAD and the 103 one-day-
ahead forecasting returns correspond to the same out-of-sample period for the NYSE.
As anticipated, the recurrent ε-SVR very accurately captures the actual returns.

5 Conclusions

In this paper we propose a recurrent ε-SVR procedure for non-linear ARMA mod-
els which has a global feedback loop from the output layer to the input space and
examine the empirical forecasting performance of the proposed procedure. Empirical
applications are made for forecasting the simulated data and the real data of the Cana-
dian Dollar (CAD) against US Dollar daily exchange rates and the New York Stock
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ExchangeTM (NYSE) composite stock index. The forecasting ability of the recurrent
ε-SVR is also compared with those of random walk, threshold ARMA, MLE-based
ARMA, the recurrent ANN ARMA and the feed-forward SVR ARMA with regard
to two quantitative evaluation metrics and robust Diebold–Mariano tests following
Newey–West procedure.

The NMSE and sign evidence from both the simulated and real data analysis obvi-
ously shows that the proposed recurrent ε-SVR statistically improves the forecasting
performance of the standard feed-forward one. And it also consistently outperforms
the benchmark models in forecasting the return magnitude and the turning points, just
with two exceptions revealed by DM4 and DM5 when forecasting the linear ARMA
simulation series. Empirical analysis is in favour of the theoretical advantage of the
recurrent SVR. The sensitivity to free parameters of the recurrent ε-SVR results and
its iterative process are also examined in detail by using the cross-validation method,
which can be implemented very easily. In conclusion, the proposed recurrent ε-SVR
method can be used as another standard SVR construction procedure in other appli-
cations.
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